Verification tool for concurrent software

November 2014
candidate Christian Bergum Bergersen
supervisors Martin Steffen, Volker Stolz (UiO/HiB), Ka I Pun
group PMA
type 60 ECTS
recommended background program analysis, parsing, compilation
study program computer science

Short description

The task is to implement a program analysis tool for conncurrency-related errors like deadlocks and races

Background and motivation

Writing bug-free, safe, software in a modern language like Java can be quite a challenge: apart from getting
the business logic of what is to be implemented right, null-pointer accesses and other bugs get in our way. For
concurrent/multi-threaded software, we face yet another challenge: firstly, we need to figure out where to use
concurrency primitives like locking to protect shared data. Design decision have a big influence on performance
here —of course we could just use one "giant” lock to protect resources, but then we’d almost end up with a
sequential application again. More critically, we may accidentally introduce deadlocks or data-races, which will
make our application get stuck or produce garbled results.

At PMA, we have developed a basic theory about how to analyse such software (we’re certainly not the first;
there’s lots of existing theory and even commercial tools). Now, the challenge is to turn this into a useable tool
for Java (analysing synchronized blocks, or locking using java.util.concurrent) or for C-programs using the
pthreads-API. Another alternative would be the Go language.

Problem setting

A prospective student would try to use an existing program analysis framework like Soot to

e implement the analysis,

collect performance results on scalability,
e run experiments on existing open-source software projects,

contribute to publications/conference submissions.

It may be possible to visit TU Darmstadt (Germany) during the thesis, within the GoRETech-project.

Keywords: program analysis, concurrency, verification

References

[1] K. I. Pun, M. Steffen, and V. Stolz. Deadlock checking by data race detection. Journal of Logic and Algebraic Methods
in Programming, Mar. 2014. Available online 13 August 2014, http://dx.doi.org/10.1016/j.jlamp.2014.07.003. A
preliminary version was published as University of Oslo, Dept. of Computer Science Technical Report 421, October
2012.

[2] K. I. Pun, M. Steffen, and V. Stolz. Effect-polymorphic behaviour inference for deadlock checking. Submitted for
journal publication, under review, 2014. A longer version is available (under the title “Lock-Polymorphic Behaviour
Inference for Deadlock Checking”) as UiO, Dept. of Informatics Technical Report 436, Sep. 2013.



	Short description
	Background and motivation
	Problem setting
	Keywords:


