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Short description

The task is to implement a program analysis tool for conncurrency-related errors like deadlocks and races

Background and motivation

Writing bug-free, safe, software in a modern language like Java can be quite a challenge: apart from getting
the business logic of what is to be implemented right, null-pointer accesses and other bugs get in our way. For
concurrent/multi-threaded software, we face yet another challenge: firstly, we need to figure out where to use
concurrency primitives like locking to protect shared data. Design decision have a big influence on performance
here —of course we could just use one "giant” lock to protect resources, but then we’d almost end up with a
sequential application again. More critically, we may accidentally introduce deadlocks or data-races, which will
make our application get stuck or produce garbled results.

At PMA, we have developed a basic theory about how to analyse such software (we’re certainly not the first;
there’s lots of existing theory and even commercial tools). Now, the challenge is to turn this into a useable tool
for Java (analysing synchronized blocks, or locking using java.util.concurrent) or for C-programs using the
pthreads-API. Another alternative would be the Go language.

Problem setting

A prospective student would try to use an existing program analysis framework like Soot to

e implement the analysis,

collect performance results on scalability,
e run experiments on existing open-source software projects,

contribute to publications/conference submissions.

It may be possible to visit TU Darmstadt (Germany) during the thesis, within the GoRETech-project.
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